Software Defined Radio in the Mobile Phone
Software Defined Radio in the Mobile Phone
An analysis of the maturing wireless technology set to disrupt the mobile ecosystem

November 2007

Kaustubha Parkhi
Lead Analyst

Matt Lewis
Research Director

ARCchart Ltd
27 Holywell Row
London EC2A 1JB
United Kingdom

Tel: +44 20 7456 9669
Fax: +4420 7456 9660
Email: service@arcchart.com
Executive Summary

With all the sophistication that characterizes mobile phones today, it is easy to forget that the handset, at heart, is a radio. Put simply, the mobile phone’s basic function is to send and receive radio signals carrying voice or data information. These signals travel on different frequencies, utilising various waveforms. However, the growing base of mobile subscribers worldwide, along with the increasing sophistication of devices and the uptake of richer mobile applications, is leading to an increasing demand for additional waveforms and new frequency bands.

Traditionally, radios have been implemented entirely in hardware, with new waveforms added by integrating new hardware. However, jump forward three years and it is foreseeable that handsets sold into developed markets will need to support the following wireless standards: GSM, GPRS, EDGE, WCDMA, HSDPA, Long Term Evolution (LTE), GPS, mobile TV, Wi-Fi, Bluetooth and UWB. Add WiMAX to the mix, as well as multi-mode handsets able to work across GSM and CDMA networks, and the number of waveforms to be supported is considerable.

Integrating additional radio hardware into a device is impractical beyond a point because it increases handset size, complexity and cost. The attraction of Software Defined Radio (SDR) is its ability to support multiple waveforms by re-using the same hardware while changing its parameters in software. This has enormous benefits for handset size, cost, development cycle, upgrade and interoperability. SDR-enabled phones will also ease the challenges posed by spectrum scarcity and compliment the network-agnostic approach of IMS.

SDR in mobile phones is not a case of ‘if’ but ‘when’. This report presents a detailed analysis of all facets of SDR activity and forecasts the timelines and market for SDR in mobile phones. As part of this research, ARCchart interviewed 25 stakeholders across the mobile phone value-chain, including OEMs, IP owners, chip experts, antenna specialists, operators, regulators and industry associations. These stakeholders discussed their SDR initiatives and shared their insights on the drivers for SDR, the technology and business challenges and the estimated timelines for the introduction of SDR in mobile phones.

The endgame for a SDR-enabled handset is a digital RF front-end, a high data-rate supporting baseband and a more agile and dynamic analogue-to-digital / digital-to-analogue converter block. From a technology perspective, the baseband is already software driven to a large extent in most commercial handsets. We estimate that handsets with fully re-programmable basebands will reach the market by the second half of 2009. The RF front-end and the antenna present greater design challenges, but products that facilitate a single step conversion from the RF signal to the baseband signal have already been launched and eventually these will be integrated with the re-programmable baseband. ARCchart predicts that commercial handsets with programmable RF front-ends will appear by 2010/11. Antennas will continue to be the most challenging functional block for re-programmability. However, we believe that antenna specialists will undergo heightened innovation activity and this may fuel mergers and acquisitions in the industry.
The report outlines the history of software defined radio, presenting its primary adopters, various initiatives and introduces the industry bodies that are driving SDR. Subsequently, the functional blocks of the mobile phone are described, including the codec, baseband, RF front-end and antenna. This discussion puts the drivers and challenges for mobile phone SDR in context by explaining the functions and common implementation methodologies of each of these blocks.

The key driver technologies that ARCchart believes will accelerate the adoption of SDR are identified: these include mobile TV, LTE, UWB, GPS and WiMAX, and we explain the compelling technological reasons that make these wireless standards the leading catalysts for SDR. An in-depth analysis of the commercial incentive for mobile phone SDR is presented – for example, OEMs can use SDR to turn-around new phones faster and operators can exploit SDR devices to make optimal use of their limited spectrum.

Although SDR is an appealing solution, the technology faces several challenges before its use in mobile phones becomes mainstream. A dissertation of these challenges is presented which includes, among others, the stakeholders’ apprehensions about the disruption likely to be heralded by SDR. The report details the approaches adopted by the various industry stakeholders to address the technology and business challenges. Different specialists are tackling various functional blocks to synchronize them with SDR implementation milestones, and the report presents the state-of-the-art for each of these blocks. An analysis of SDR patent activity is conducted, shedding light on the innovation taking place within leading companies across various technology categories.

The report tracks the activity of the various stakeholders in relation to the implementation of SDR in handsets. The stakeholder groups identified include design IP vendors, chip vendors, handset OEMs, EMS providers, air interface specialists, operators, antenna specialists and industry associations. Some of the companies and organizations covered include ARM, Certicom, Infineon, PrismTech, Altera, BitWave Semiconductor, Freescale, Innovative Wireless Technologies, Sandbridge Technologies, TI, Xilinx, Alcatel-Lucent, Motorola, Nokia, picoChip, Vanu, Lytech, Qualcomm, Antenova, Sarantel, the E2R initiative and the SDR Forum.

The report provides forecasts for the timelines and markets for mobile phone SDR, covering optimistic and pessimistic scenarios. We believe that SDR will first be adopted in smartphones as these devices will be better able to absorb the higher cost of early SDR implementation. Across all devices, ARCchart estimates that SDR phone shipments will grow to more than 11% of the market in 2011 under our optimistic scenario. SDR-enabled handset shipments are also broken-down by region (North America, EMEA, Asia Pacific and the Caribbean and Latin America), showing early adoption likely to be by niche markets in Western Europe and North America, which are saturated in terms of mobile penetration and tele-density. However, the largest push for mobile phone SDR will come from the mainstream APAC market. An assessment is also provided of the readiness of key national markets such as Australia, Brazil, China, India, Japan, South Korea, the UK and the US.
Table of Contents

A. SDR: CONCEPT, HISTORY AND FRAMEWORK ... 1

A.1 | Introduction 1
A.2 | What is SDR? 2
 | Definition ... 2
 | Software Defined Radio definition .. 4
A.3 | History of SDR 5
 | Software Communications Architecture (SCA) ... 5
 | Joint Tactical Radio System (JTRS) .. 7
 | SPEAKeasy ... 8
 | Other major SDR initiatives ... 8
A.4 | Summary 9

B. THE HANDSET: ARCHITECTURE AND VALUE CHAIN ... 11

B.1 | Functional blocks 11
 | Antenna ... 12
 | Introduction .. 12
 | Mobile phone and antennas ... 12
 | Internal antennas .. 13
 | Microstrip antennas .. 13
 | RF Front-end .. 14
 | Introduction .. 14
 | Mobile phone and the RF front-end .. 15
 | Intermediate frequency filter .. 16
 | RF power amplifier ... 16
 | RF ADC and DAC .. 16
Software Defined Radio in the Mobile Phone

| Baseband and Application Processors ... 16
| Introduction .. 16
| Handset analogue and digital baseband functions ... 16
| DigRF ... 17
| Components of the baseband and application processors 18
| Baseband memory ... 19
| Case-Studies: Popular integrated baseband and application processors 20
| Codec ... 21
| Mobile phone and codecs .. 21
| Compressing ... 22

B.2 | Mobile phone manufacturing cycle 22
B.3 | Summary 23

C. EMERGING WAVEFORMS AND THEIR CHALLENGING REQUIREMENTS 24

C.1 | Mobile TV 25
| Digital Video Broadcast – Handheld (DVB-H) .. 25
| Integrating DVB-H components in the mobile phone 27
| MediaFLO .. 28
| Integrating MediaFLO components in the mobile phone 30
| Other Major Mobile TV Standards ... 31

C.2 | Long Term Evolution (LTE) 31
| The mobile phone and LTE .. 32

C.3 | Ultra-Wide Band (UWB) 34
| The mobile phones and UWB .. 34
| Case Study – Staccato Communications ... 34

C.4 | Global Positioning System (GPS) 36
| The mobile phone and GPS .. 36
| Company review – TI ... 37
| Company review – Global Locate .. 37

C.5 | WiMAX 38
C.6 | Conclusion 38
D. SDR: BUSINESS CASE AND PREREQUISITES ... 40

D.1 | Technology and business drivers of SDR ... 42

| Multi-protocol compatibility ... 42
| Cost and space savings .. 43
| Efficient spectrum usage ... 43
| Support for emerging standards ... 44
| Mapping SDR in the IP Multimedia Subsystem (IMS) framework 45
| Efficient supply chain and shorter time-to-market ... 46

D.2 | Technology and business limitations of SDR .. 46

| RF front-end trade-offs .. 46
| Antenna trade-offs ... 47
| Billing complications ... 48
| Security considerations .. 48
| Power consumption ... 50
| Incremental usage of hardware and software resources 50
| Commercial inertia .. 51
| Intellectual Property Rights (IPR) ... 52
| Price .. 53

Technology factors .. 53

D.3 | Conclusion .. 53

E. CHANGES INTRODUCED BY SDR IN CONVENTIONAL RADIO ARCHITECTURE 55

E.1 | Changes in ADC/DAC ... 56
E.2 | Changes in PA section .. 57
E.3 | Changes in IF section ... 58

| Single chip transceiver from Nexus ... 58
| Single chip solution from Infineon ... 58
| Deep submicron semiconductor technology ... 60
| MEMS .. 60

E.4 | Changes in baseband ... 60

| Re-programmable baseband from Sandbridge .. 60
| Middleware ... 61
E.5 | Changes to the antenna 62

| Ethertronics Isolated Magnetic Dipole (IMD) ... 63
| Software defined antenna from TensorComm .. 63
| MLA from SkyCross .. 63
| Fractal based antenna from Fractus ... 63
| LTCC .. 64

E.6 | DSP, FPGA, ASIC – comparative analysis ... 64

| DSP .. 64
| FPGA ... 66
| ASIC ... 67
| Summary ... 67

F. IMPACT ON THE KEY STAKEHOLDERS ... 69

F.1 | Design IP Vendors .. 70

| Overview .. 70
| Company reviews ... 70
| ARM ... 70
| Certicom ... 71
| Infineon .. 72
| PrismTech ... 73

F.2 | RF MEMS/DSP/ASIC/FPGA and other chip vendors .. 74

| Overview .. 74
| Company reviews ... 75
| Altera ... 75
| BitWave Semiconductor .. 75
| Freescale .. 77
| Innovative Wireless Technologies (IWT) ... 77
| Sandbridge Technologies ... 78
| Texas Instruments (TI) .. 78
| Xilinx ... 79

F.3 | OEMs .. 80
ADC/DAC ... 127
Antenna... 127
Baseband block... 127
Dynamic configuration changes using the air interface .. 128
Power amplifier and modem.. 128
Processes and materials that facilitate SDR ... 128
RF front-end .. 128
SDR based business and technology innovations .. 128
Testing and approval of SDR equipment.. 128
| Leading patent assignees .. 128
| Leading innovating countries ... 129

I. APPENDICES ... 130

I.1 | IF filter .. 130
I.2 | RF power amplifier ... 130
I.3 | RF ADC and DAC .. 133
I.4 | Mobile phone memory types ... 135
I.5 | Mobile phone baseband ICs ... 135
| PNX5220 ... 135
| ARM9 .. 136
I.6 | Compingding methodology ... 136
I.7 | RF front-end design limitations .. 137
I.8 | Wheeler’s and Maxwell’s antenna equations ... 138
I.9 | Static and dynamic power dissipation ... 139
I.10 | ADC/DAC process enhancements .. 139
I.11 | Digital linearization techniques and vendor specific process enhancements in PA 140
| Digital linearization techniques .. 140
| Vendor initiatives ... 141
I.12 | Sirific Nexus HEDGE transceiver .. 142
I.13 | Sandblaster architecture ... 143
I.14 | IMD antenna from Ethertronics ... 146
I.15 | Fractals .. 146
List of Figures

Figure A-1: The seven-layer OSI model ... 3
Figure A-2: The SCA architecture layer diagram .. 6
Figure B-1: Block diagram of an entry level mobile phone 11
Figure B-2: PIFA microstrip antenna .. 13
Figure B-3: Antenna electromagnetic field patterns .. 13
Figure B-4: The Impact of various RF blocks on the incoming signal 15
Figure B-5: Integration of the baseband with handset application blocks 17
Figure B-6: DigRF block diagram .. 18
Figure B-7: Block diagram of ARM 926-EJ application processor 19
Figure B-8: Block Diagram of PNX 5220 baseband processor 20
Figure B-9: Block diagram of the STw5093 codec .. 22
Figure C-1: DVB-H delivery network .. 26
Figure C-2: Nokia N77 DVB-H mobile phone .. 26
Figure C-3: Block diagram of a DVB-H receiver ... 27
Figure C-4: Conceptual diagram of a DVB-H device .. 28
Figure C-5: MediaFLO technology deployment .. 29
Figure C-6: Conceptual hardware block diagram of MediaFLO handset 30
Figure C-7: The protocol stack of a MediaFLO mobile phone 31
Figure C-8: Test setup of a LTE handset .. 33
Figure C-9: Schematic representation of a MIMO antenna system 33
Figure C-10: Single Chip UWB Solution ... 35
Software Defined Radio in the Mobile Phone

Figure C-11: The WiMedia protocol independent kernel... 35
Figure C-12: Block diagram of NL5350 Single-Chip GPS solution.. 37
Figure D-1: Accommodating parallel radios on the mobile phone.. 40
Figure D-2: IMS reference architecture.. 45
Figure E-1: Digital RF processor... 55
Figure E-2: The Nexus HEDGE transceiver.. 58
Figure E-3: The Infineon Solution using SMB6272 .. 59
Figure E-4: Mobile phone antenna based on Fractals... 64
Figure F-1: The Certicom Solution Portfolio... 72
Figure F-2: PrismTech Middleware Schematic ... 73
Figure F-3: The softransceiver RFIC architecture.. 75
Figure F-4: Sundance SMT8096 SDR platform .. 79
Figure F-5: The BenQ P51 smartphone (discontinued) based on Flextronics’ Peabody platform.... 86
Figure F-6: Asus P535 PDA... 86
Figure F-7: The SFF SDR.. 88
Figure F-8: The Qualcomm business model.. 90
Figure F-9: Qualcomm patent allocation matrix .. 91
Figure F-10: PENTANOVA Penta-band Antenna... 95
Figure F-11: Top view of the RADIONOVA GPS Antenna... 95
Figure F-12: The E2R operation flow... 97
Figure F-13: UBM ... 100
Figure F-14: Singapore spectrum allocation chart .. 105
Figure G-1: Global handset unit shipments: 2007 - 2011... 108
Figure G-2: SDR-enabled mobile phone shipments: 2007 - 2011.. 109
Figure G-3: Mobile TV and SDR handsets driver comparison: 2007 - 2011................................. 110
Figure G-4: GPS and SDR handsets driver comparison: 2007 - 2011.. 111
Figure G-5: WiMAX and SDR handsets driver comparison: 2007 - 2011 .. 112
Figure G-6: Comparison between SDR-enabled mobile phones and smartphone: 2007 - 2011 113
Figure G-7: APAC growth of SDR-enabled mobile phones: 2007 - 2011 .. 114
Figure G-8: APAC SDR handset driver analysis and smartphone comparison: 2007 - 2011 115
Figure G-9: EMEA growth of SDR-enabled mobile phones: 2007 - 2011 .. 116
Figure G-10: EMEA SDR handset driver analysis and smartphone comparison: 2007 - 2011 117
Figure G-11: North America growth of SDR-enabled mobile phones: 2007 - 2011 118
Figure G-12: North America SDR handset driver analysis and smartphone comparison: 2007 - 2011 119
Figure G-13: CA-LA growth of SDR-enabled mobile phones: 2007 - 2011 .. 120
Figure G-14: CA-LA SDR handset driver analysis and smartphone comparison: 2007 - 2011 121
Figure G-15: Regional SDR-enabled handset shipment summary: 2007 - 2011 .. 122
Figure I-1: Functional Blocks of an RF Power Amplifier .. 132
Figure I-2: μ-Law Companding Output .. 137
Figure I-3: Block diagram of the Nexus transceiver .. 142
Figure I-4: Sandbridge Technologies’ SB3000 flexible baseband processor ... 144
Figure I-5: E2R policy management use-case ... 147
Figure I-6: E2R self-configuring protocols use-case ... 148
Figure I-7: E2R traffic load balancing use-case .. 149
List of Tables

Table A-1: Outline of the major SDR initiatives ... 9
Table C-1: Licensed waveforms: frequency bands and channel bandwidths ... 24
Table C-2: LTE Bandwidths and Data Rates .. 33
Table E-1: Comparison of ASICs, FPGAs & DSPs ... 68
Table G-1: SDR-enabled mobile phone shipments: 2007 - 2011 .. 109
Table G-2: Mobile TV handset shipments: 2007 - 2011 ... 110
Table G-3: GPS-enabled mobile phone shipments: 2007 - 2011 .. 110
Table G-4: WiMAX-enabled mobile phone shipments: 2007 - 2011 ... 111
Table G-5: Smartphone shipments: 2007 - 2011 .. 112
Table G-6: APAC growth of SDR-enabled mobile phone: 2007 - 2011 ... 114
Table G-7: EMEA growth of SDR-enabled mobile phones: 2007 - 2011 ... 116
Table G-8: North America growth of SDR-enabled mobile phone shipments: 2007 - 2011 118
Table G-9: CA-LA - SDR-enabled mobile phone shipments .. 120
Table I-1: Choice of Semiconductor Technologies for RF Power Amplifiers .. 131